Modélisation par champ de phase des métamorphoses de gradient de température

Atelier Neige – Automne 2017: 20/10/2017

Rémi Granger (Doctorant) Sols, Solides, Structures et Risques (3SR) – Centre Nationale de Recherches Météorologiques /Centre d'Études de la Neige (CNRM/ CEN)

> Directeurs de thèses: Christian Geindreau (3SR) Frédéric Flin (CNRM/CEN)

- Contexte et position du problème
- Méthode des champs de phases
- Validations
- Simulations

La métamorphoses de gradients de température

Physiques des métamorphoses de gradient de température

Problèmes aux limites:

 Ω_i

Sublimation

 Ω_a

Transfert

de chaleu

Résolution par champs de phase

Méthodes des champs de phases: modèles de Kaempfer et Plapp (2009)

Objectifs

Représenter implicitement l'interfaceSe ramener à 1 seul domaine de résolution

• Propriétés matériaux interpolées:

$$\kappa(\phi) = \kappa_i \frac{1+\phi}{2} + \kappa_a \frac{1-\phi}{2}$$
$$D(\phi) = D_v \frac{1-\phi}{2}$$

Méthode champ de phase: modèle de Kaempfer et Plapp (2009)

Diffusion de la chaleur $C(\phi)\partial_t T = \nabla(\kappa(\phi)\nabla T) + \frac{L}{2}\partial_t \phi$

Diffusion de la vapeur
$$\partial_t u =
abla (D(\phi)
abla u) - rac{1}{2} \partial_t \phi \qquad ext{Avec} \qquad u = rac{
ho_v -
ho_{vs}(T_0)}{
ho_i}$$

Évolution de l'interface

$$\tau \partial_t \phi = W^2 \Delta \phi - \phi^3 + \phi + \lambda \left(\frac{\rho_v - \rho_{vs}(T)}{\rho_i}\right) (1 - \phi^2)^2$$

$$\lambda=rac{5}{8}\sqrt{2}rac{
ho_i}{d_0
ho_{vs}(T_0)}W$$
 et $au=W^2rac{eta}{d_0}$ (isotrope içi)

Avec

Solution vérifie problèmes aux limites à o(W)

Condition de validité et verrous

Avec les valeurs des paramètres physiques:

$$o(W) \ll 1 \Leftrightarrow W \ll 10^{-6} \text{ m}$$

→ maillage très fin:

 $\frac{d_{grain}}{h_{discretisation}} \simeq 1000$

$$\partial_t u =
abla (D(\phi)
abla u) - rac{1}{2} \partial_t \phi$$

Avec $D(\phi) \in [0, Dv]$

Fort contraste de diffusion: front allant de l'air vers la glace.

Validations

Évaluation 1D Comparaison problèmes aux limites

Comparaison avec solution du problème aux limites après 100s de simulation.

Convergence 2D

Convergence dans le cas 2D

Après 20 000s de simulation

Simulations

- centre de masse
- déformation (Rapport des moments d'inertie)
- surface objet (= volume 2D)

Cavité circulaire

Cavité circulaire

Cavité circulaire

Modélisation par champ de phases des métamorphoses de gradient

Cavité elliptique horizontale

Cavité elliptique horizontale

Cavité elliptique horizontale

Cavité elliptique verticale

Modélisation par champ de phases des métamorphoses de gradient

21

Cavité elliptique verticale

Cavité elliptique verticale

Modélisation par champ de phases des métamorphoses de gradient

23

Bille de glace elliptique

Variation de surface : 6,6%

Bille de glace elliptique

Vitesse : 1.3 10⁻⁹ m/s

Bille de glace elliptique

Rapport moment d'inertie: x3

Bille de glace circulaire

Bille de glace circulaire

Bille de glace circulaire

Conclusions

- Aplatissement des cavités
- Conservation du volume pour les cavités
- Elongations des billes
- Déformation moins rapide dans le cas d'une sphère

• Kaempfer And Plapp (cavité de 1 mm): allongement → effet de la taille?

Bibliographie

• Kaempfer, T. U., & Plapp, M. (2009). Phase-field modeling of dry snow metamorphism. Physical Review E, 79(3), 031502.