Modélisations du piégeage des gaz dans la glace polaire

Patricia Martinerie, Camille Bréant, Alexis Burr, Kévin Fourteau

Camille Bréant (LSCE/IGE)

Encadr. Amaëlle Landais, Patricia Martinerie soutenance de thèse proche

Alexis Burr (IGE/SIMAP)

Encadr. Christophe Martin, Armelle Philip soutenance de thèse proche

Kévin Fourteau (IGE) Encadr. Patricia Martinerie, Xavier Faïn Début de 2ème année de thèse

Motivation :

constraining firn thickness with a combined model-data approach

Isotopes of inert gases:

Gravitational fractionation over most of firn thickness (diffusive zone)

Ice core records of $\delta^{15}N$ and/or $\delta^{40}Ar$ provide constraints on firn thickness

Mechanical models of firn densification aim at predicting firn thickness variations

Constraining the ice age at gas trapping depth is necessary to evaluate the phasing between temperature and greenhouse gas changes_{/27}

Main model components Goujon et al., JGR, 2003

1D ice flow module W=f(Acc,m,Wbase, etc.)

Heat transfer module T(z) = f(W,Tbase, etc.)

Densification module $\Delta \rho / \Delta t = f(T, Acc, etc.)$

Gas age module COD, Δage = f(ρ, etc.)

Isopic module δ=f(T,Zconv,Zlid,etc) Equilibrium state Multidisciplinary

Deep-firn oriented

800 000 years run in a few minutes

A balance between opposite effects

S¹⁰N (permil)

Modified activation energies

Bréant et al., Clim. Past., 2017

Very good results although the physics is rough

- δ15N measured
- δ15N model

Bréant, PhD, 2017

Some possible perspectives

Possible amplifiers of the accumulation effect ? (Radiation ? Impurities ?)

Need for better understanding what controls densification speed in the ~0.5 to ~0.8 g/cm³ density range

"Cold sintering of ceramics" (2016-2017) <u>https://www.mri.psu.edu/mri/news/</u>

research-breakthrough-cold-sintering

Most sintering processes occur at temperatures >1000°C Cold sintering achieves dense ceramic solids at < 300°C Using impurities, liquid-solid interface and external pressure

Gas trapping criterion as a function of density

Closed porosity measurements: pycnometry Stauffer et al., Ann Glaciol, 1985

Data available only at a few sites, edge effects difficult to evaluate

Closed porosity estimates from tomographic images Alexis Burr, PhD work

Cut bubble correction is sample size and image resolution dependent

Consistency with air content data

"air conservation" calculation based on Rommelaere et al., JGR, 1997

V	V _c	ρ _c	
0.0865	0.1075	0.840	DC data, Martinerie et al. 1992
0.093	0.112	0.838	Goujon et al., 2003
0.108	0.134	0.823	Schaller et al., CPD, 2017 (Dome Fuji)
0.116	0.143	0.816	Burr, PhD, minimum envelope
<u>0.084</u>	<u>0.104</u>	0.843	Burr, PhD, maximum envelope

Tomography based data seem to underestimate the air trapping density Similar result in Schaller et al., CPD, 2017 for the Antarctic Plateau

We wish to directly compare pycnometry and tomography (Kévin Fourteau)

Effects of fine scale trapping processes Layering

Variations in pore structure and density are visible in the firn

This creates a layered trapping of gases

 \rightarrow Gas stratigraphy is pertubed at the cm scale

Effects of fine scale trapping processes Layering

Effects of fine scale trapping processes Smoothing

Gradual closure of porosity

- \rightarrow Bubbles at the same depth close at different times
- \rightarrow Gases of different ages are mixed in the same ice layer

Effects of fine scale trapping processes

These two phenomena vary strongly from site to site

Need to understand the fine scale effects of :

- Accumulation
- Temperature
- Initial pore structure
- Chemical impurities

Research article

Analytical constraints on layered gas trapping and smoothing of atmospheric variability in ice under low accumulation conditions

Kévin Fourteau¹, Xavier Faïn¹, Patricia Martinerie¹, Amaëlle Landais², Alexey A. Ekaykin³, Vladimir Ya. Lipenkov³, and Jérôme Chappellaz¹

¹Univ. Grenoble Alpes, CNRS, IRD, Grenoble INP, IGE, F-38000 Grenoble, France

²Laboratoire des Sciences du Climat et de l'Environnement, UMR8212, CEA-CNRS-UVSQ-UPS/IPSL, Gif-sur-Yvette, France ³Climate and Environmental Research Laboratory, Arctic and Antarctic Research Institute, St. Petersburg, 199397, Russia

In Climate of the Past Discussion

04 Jul 2017

– Review status

This discussion paper is a preprint. It is a manuscript under review for the journal Climate of the Past (CP).

Aims to represent the compression of a firn slab and the evolution of the porosity

- Finite elements framework
- Levelset (LS) representation of the snow (ice + air)

Remeshing at each time step : \rightarrow Elements adapt to the LS

Remeshing at each time step : \rightarrow Elements adapt to the LS

The remeshing and its coupling with Elmer/Ice is done ! Problem of mass conservation to solve.

