SMRT: a new modular snow active/passive microwave radiative transfer model

Ghislain Picard (IGE), Melody Sandells (Corescience, UK) and Henning Löwe (SLF)

What is a microwave radiative transfer model?

<u>Inputs :</u>

- Snowpack:

+ Homogeneous layers (density, temperature, microstructure)

+ internal interfaces

+ bottom interface (soil, ...)

+ top interface and atmosphere.

- Sensor configuration

Computations:

1) single scattering and absorption properties in each layer

2) propagation / multiple scattering between the layers

 \rightarrow outgoing intensity / radiance/ brightness temperature

CoReH2O, ESA, Earth Explorer 8 Mission (not selected)

The different microwave RT models for snow:

Fortran / MatlabMatlab / FortranMatlabFortran/PythonFMIC. Mätzler & coL. Tsang & coG. Picard & co

Why a new model:

- need inter-comparisons at the level of processes, not of whole models.

- progresses in snow microstructure \rightarrow need to inter-compare different microstructure representations (existing and new ones).

- need a unified passive/active model (this is not new).

- need a community model.

Overall model structure

Outputs

►

Overall model structure

Example:

Use simple, intuitive naming of the functions, variables Strict rules (uppercase, underscore, limited abbreviations) A lot of python magic under the hood

Modularization & Extensibility:

Each block is as autonomous as possible (encapsulation):

Why:

- Known to be a good programming practice \rightarrow less bugs.
- Each block can have multiple implementations.
- Easier to extend (limited knowledge about the whole code is needed).

```
# create the model
m1 = make_model("iba", "dort")
# create another model
m2 = make_model("dmt_shortrange", "dort")
```

Each block = one directory:

smrt/emmodel/ iba.py and dmrt_shortrange.py are files in smrt/emmodel/.

Adding a new theory to compute scattering is as simple as adding a new file in this directory!

smrt/microstructure/

Legacy:

SMRT intents to be an unification of existing models, a repository of community knowledge. → thin wrappers for DMRT-QMS, MEMLS and HUT have been written to call these legacy models in their original form.

→ convenient comparison and cross-check opportunities

Example of intercomparison:

Comparisons of 4 models:

- DMRT-ML (original) SMRT DMRT QCA-CP
- DMRT-QMS (original) SMRT DMRT QCA

Exploration of microstructure representation:

Both have the same SSA, but the medium on the right is **more heterogeneous** than on the left ("higher coarseness").

Exploration of microstructure representation:

- Independent random spheres
- Sticky Hard Sphere
- Exponential autocorrelation function → used in the MEMLS model
- Teubner Strey autocorrelation function
- Gaussian random field autocorrelation function •
- Measured microstructure using tomography (work in progress)
- Inferred autocorrelation function from SnowMicroPen (??) •

- \rightarrow useless for snow. Good for clouds
- \rightarrow used in the DMRT models

Future works: snow & sea-ice

SMRT training

February 9-11, Col du Lautaret, France

(before the Snow Science Winter School)

Ghislain Picard, Melody Sandells, Henning Löwe