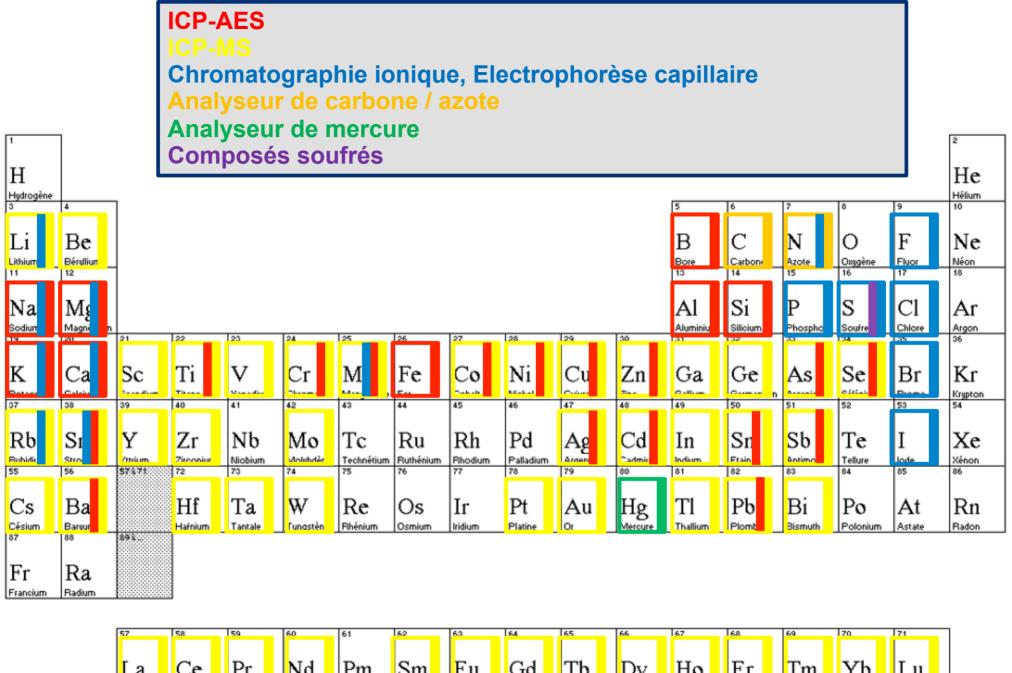
Analyses élémentaires dans des liquides

Techniques utilisées à l'OSUG Applications scientifiques


Sarah Bureau, Gaëlle Uzu, Delphine Tisserand, Stéphane Guédron, Catherine Chauvel, Alexandra Gourlan, Nick Arndt, Patrick Ginot, Aurélien Dommergue, Michel Legrand, Lorenzo Spadini, Celine Duwig, Aline Navel, Jean Martins, Denisse Archundia, Julien Nemery et....

57	58	59	60	61	62	63	64	65	66	67	68	69	70	71
La	Ce	Pr	Nd	Pm Prométhium	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu
89	90	91	92	93	94	95	96	97	98	99	100	101	102	103
Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lw
Actinium	Thorium	Protactinium	Iranium	Neptunium	Plutonium	Américium	Curium	Berkélium	Californium	Einsteinium	Fermium	Mendélévium	Nobélium	Lawrencium

Types d'échantillons analysés

Eaux naturelles

Solutions de lixiviation

Solides mis en solution :

- Roches
- Sols/ sédiments
- Plantes/ Bactéries
- Aérosols
- Animaux (mollusques, muscles de poissons..)
- Nanoparticules

Analyseur de mercure

CV-AFS (ISTerre) Tekran 2600 (LGGE)

autres laboratoires

Contact

CV-AFS Tekran

Hg

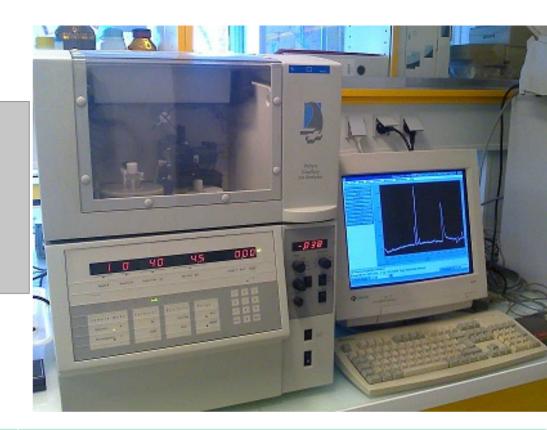
Magand

Limites de quantification	50 pg L ⁻¹	0,2 ng/L pour 30mL
Volume minimum		30 mL
Temps d'analyse par échantillon	THg 5 min MMHg 15 min	
Coût / prestation pour les	5 euros pour THa et 20 euros	

THg, MMHg

pour MMHg Avantages / inconvénients MMHg méthode limitée si passeur beaucoup de DOC Stéphane Guédron Aurélien Dommergue/Olivier

Analyseur de Carbone – Azote TOC VCSN Shimadzu (ISTerre)



Eléments analysés	TC, TIC, TN, NPOC
Limites de quantification	C: 0.2 mg L ⁻¹ , N: 0.1mg L ⁻¹
Volume minimum	15 mL
Temps d'analyse par échantillon	5 – 10 min
Coût / prestation pour les autres laboratoires	15 euros par heure
Avantages / inconvénients	Acidification, dilution automatique (seringue 8)
Contact	Delphine Tisserand

Electrophorèse **capillaire**Waters Capillary Ion Analyseur

(ISTerre)

Contact

Eléments analysés	Anions
Limites de quantification	> 500 μg L ⁻¹ (ppb)
Volume minimum	0.5 mL
Temps d'analyse par échantillon	5 à 6 minutes
Coût / prestation pour les autres laboratoires	7 euros l'échantillon, prestations possible
Avantages / inconvénients	Passeur 20 positions, technique robuste

Martine Lanson

Chomatographie ionique Dionex ICS3000 (LGGE)

Eléments analysés	Cations / Anions
Limites de quantification	< 1 µg L ⁻¹ (ppb)
Volume minimum	1.5 mL
Temps d'analyse par échantillon	10 à 25 minutes
Coût / prestation pour les autres laboratoires	
Avantages / inconvénients	Injection simultanée Anions & Cations
Contact	Patrick Ginot

Methrom (LTHE)

Eléments analysés	Anions
Limites de quantification	1 μg L ⁻¹ (ppb)
Volume minimum	? mL
Temps d'analyse par échantillon	30 minutes
Coût / prestation pour les autres laboratoires	3-5 € par échantillon, formation possible
Avantages / inconvénients	Intégration des pics manuellement
Contact	Lorenzo Spadini

Préparation des échantillons pour les analyses ICP

Solubilisation des échantillons par une attaque à haute température à l'aide d'acides/ oxydants HCI, HNO₃, HF, H₂SO₄, H₃BO₃, H₂O₂, HCIO₄

Dispositifs chauffants disponibles à l'OSUG

Micro-onde SCP Novawave (LTHE)

- 24 à 48 échantillons/ jour
- Système fermé sous pression => bon rendement
- Coût 5 / 6 euros par échantillon (prix LTHE/ OSUG)
- Formation possible
- T° moyenne 180°C (max 230°)

Digiprep (Isterre)

- 48 échantillons
- Tubes ou savillex fermés à pression atmosphérique
- T° maximum 100°C

Plaques chauffantes (LTHE, Isterre)

- Béchers en téflon fermés / ouverts à pression atmosphérique
- T° maximum 150°C

Enceinte de pression (Isterre)

- 12 échantillons
- Container 12 mL en téflon, sous pression
- T° maximum 150°C

ICP-AES 720 ES Agilent (Isterre)

Contact

Eléments traces et majeurs
Entre 1 et 50 µg L ⁻¹ (ppb)
5 mL
2-3 minutes
21 € / 15 € l'heure d'analyse (OSUG / Isterre et LTHE)
Analyse multi-élémentaire rapide

Sarah Bureau

ICP-MS 7500 ce Agilent (Isterre)

Contact

Limites de quantification	Entre 1 et 50 ng L ⁻¹ (ppt)
Volume minimum	3 mL
Temps d'analyse par échantillon	10 minutes
Coût / prestation pour les autres laboratoires	pour une roche : 40 / 50 € (chimie + ICP)
Avantages / inconvénients	ICP-MS très sensible aux effets de matrice (importance de la chimie en amont)

Sylvain Campillo

Spectrophotomètre (Isterre)

Δm	ante	analy	ICAC
CILI		allar	

Limites de quantification

Volume minimum

Temps d'analyse par échantillon

Coût / prestation pour les autres laboratoires

Avantages / inconvénients

Evaluation non-toxicité d'un sédiment Technique longue, pas automatisée

AVS = Sulfures Volatils Acides

Contact

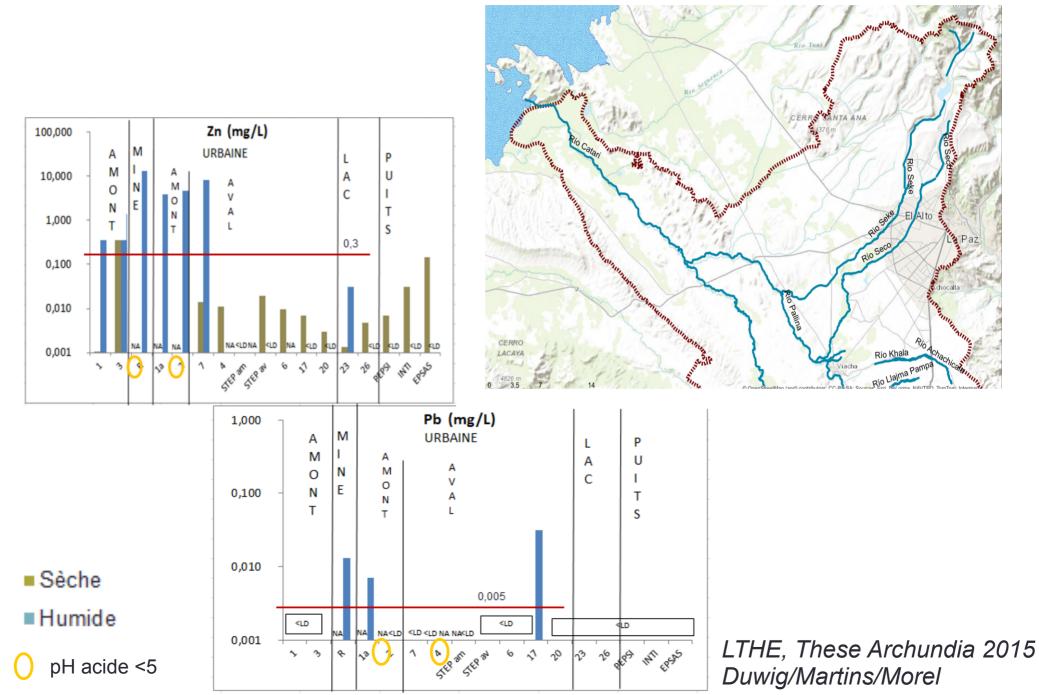
Delphine Tisserand

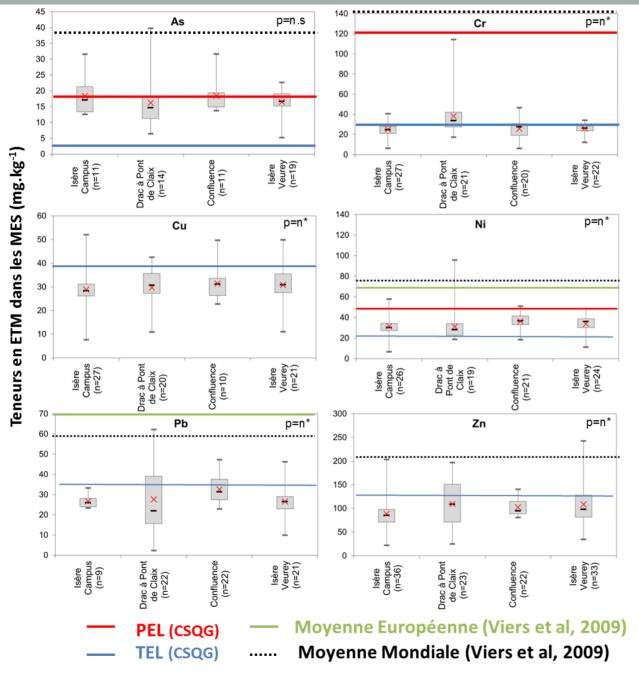
0.05 µmol S²⁻

1 heure

2 g de sédiments

Quelques applications scientifiques à l'OSUG



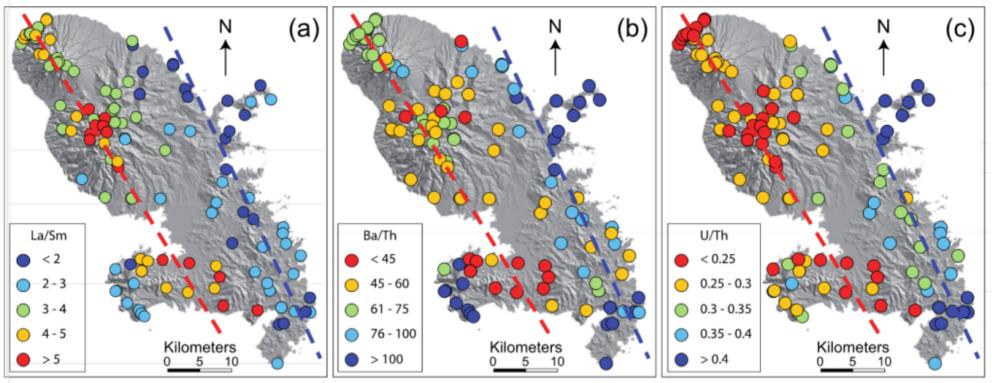

Métaux dissous dans les eaux du BV de La Paz au Lac Titicaca

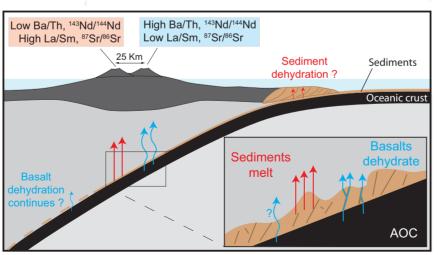
Suivi des contaminations multimétaliques dans le bassin de l'Isère

Analyses eau et sédiments :

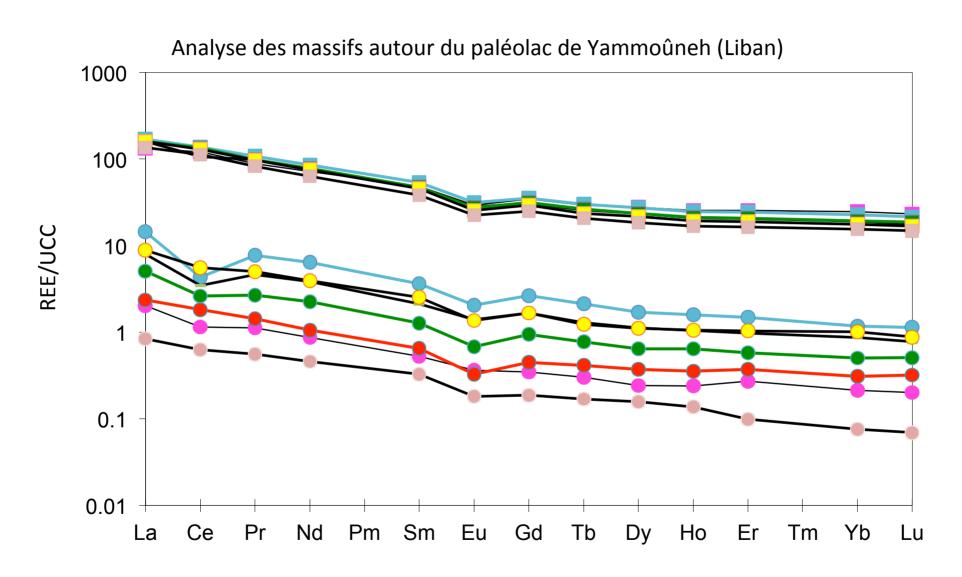
- Métaux dissous: filtration téflon 0,22 µm + ICP-AES Isterre)
- Métaux particulaires : extraction eau régale + ICP-AES Isterre)
- Mercure dissous et particulaire : analyse Isterre (Spectrométrie à Fluorescence Atomique et spectrométrie d'absorption)

LTHE, Thèse Solène Dutordoir 2014 Nemery


Cherts from Barberton, S Africa



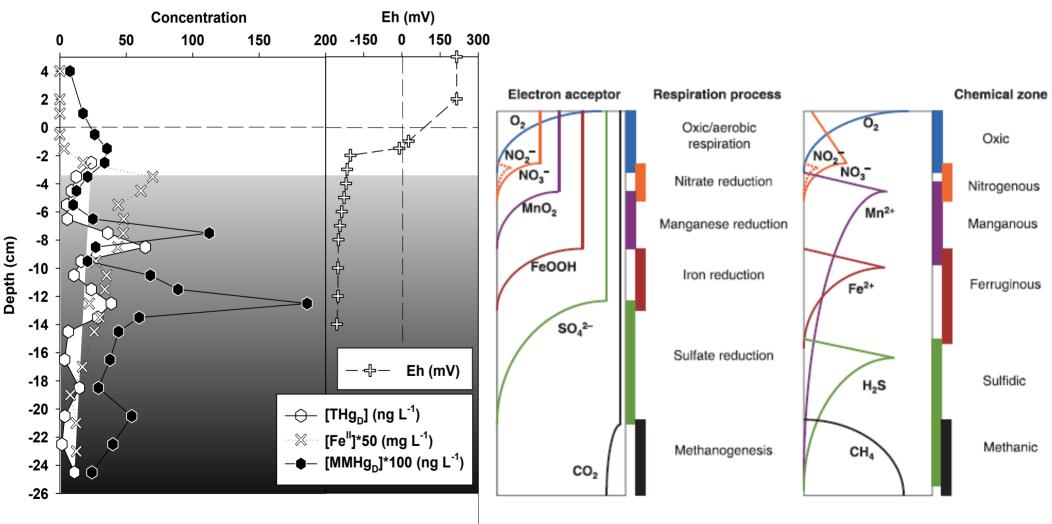
Tracer le transport des éléments traces dans les zones de subduction


Ile de la Martinique dans l'arc des Petites Antilles

Pendant 25 Ma, les sédiments subductés fondent sous l'Ouest de l'île alors que c'est la croûte basaltique qui se déshydrate sous la partie Est.

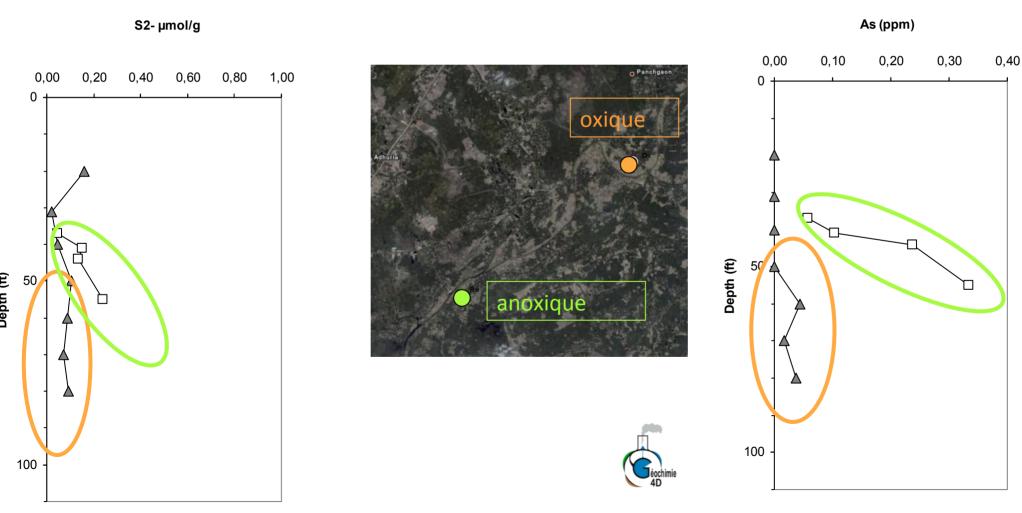
Reconstitutions climatiques de la région du Levant au Quaternaire

Comparaison avec les résultats qui seront obtenus sur les sédiments du paleolac => Tracer les sources, quantifier l'érosion


Spéciation du mercure dans les eaux porales et de surface

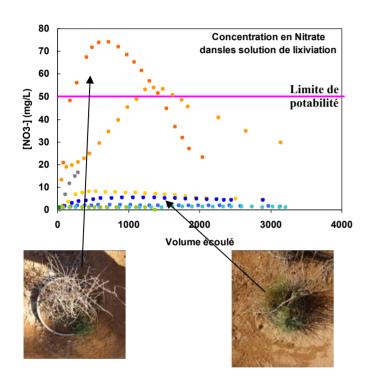
Technique:

mercure total dissous (THg_D): CVAFS monomethyl-mercure dissous (MMHg_D): cryogenic-GC-CVAFS (génération d'hydrures)


Exemple: distribution du THg et MMHg dans les eaux porales des sédiments de la baie de venise (technique de prélèvements: peepers)

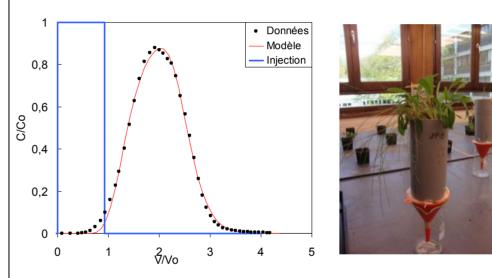
Isterre, S. Guedron et al.,2012

Evaluation d'éléments co-précipités (As...) : ex Bangladesh S²⁻ vs As en milieu réducteur



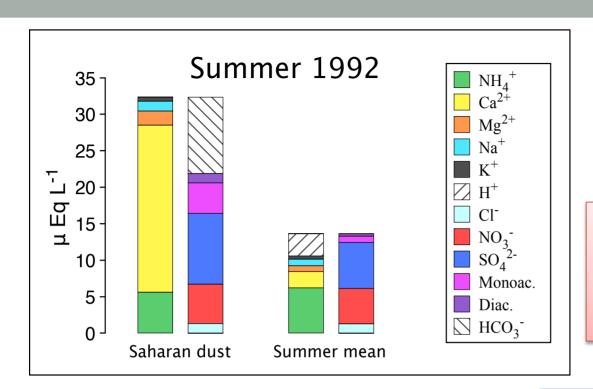
ISTerre: Tisserand, Charlet, Guedron

Analyses des anions présents dans les solutions de lixiviations



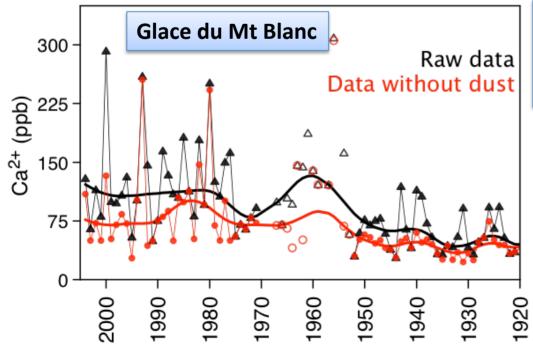
Exemple : suivi de la quantité de NO₃- en solution en sortie de colonne de sol pour voir l'effet des plantes sur le transfert des métaux dans le sol.

Le type de plante mis en place sur le sol de bassin de sédimentation minier modifie la composition de l'eau infiltré et notamment de la quantité de NO₃- en solution.


Exemple : Analyse des paramètres hydrodynamique par le suivi de la teneur en Brome appliqué au cours d'un essai de lixiviation.

Chromatogramme

En début d'incubation les plantes n'induit pas la rétention du Br considéré comme traceur de l'eau. Vérification après incubation, si les plantes installées modifient les paramètres hydrodynamique du sol mis en colonne.


The calcium trend

Saharan dust input

Plus fréquents dans les années 80's ? Besoin d'étude statistique pour ce type d'évènements sporadiques

Evolution du bruit de fond ?? béton, agriculture ? Besoin de séparer les 2 composantes (avec ICPMS ?)

Preunkert and Legrand, Towards a quasicomplete reconstruction of past atmospheric aerosol load and composition (organic and inorganic) over Europe since 1920 inferred from Alpine ice cores, Clim.Past, 9, doi: 10.5194/cp-9-1403-2013, 2013.

Métaux dissous et particulaires dans les retombées atmosphériques autour d'un ancien site minier du Sud de la

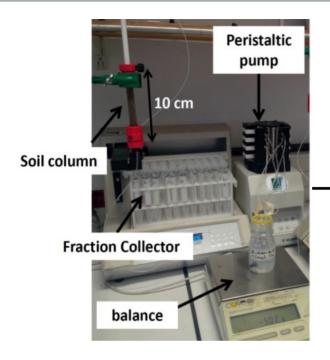
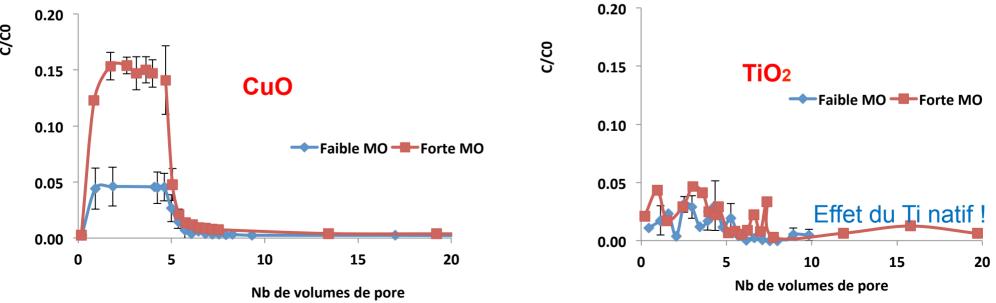
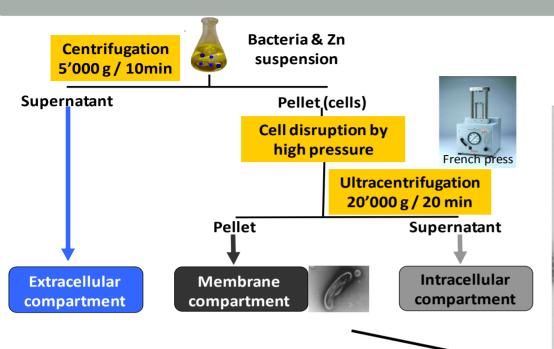



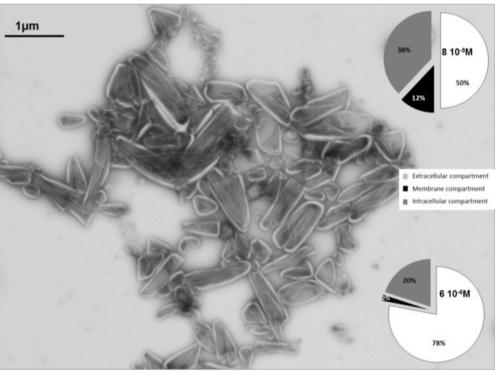
Figure 1 Total metal(loid) flux (µg.m⁻².day⁻¹, logarithm scale) from bulk atmospheric deposition, corresponding to the sum of dry (black) and wet (white) depositions, collected in OWEN Gauges to sources site (Mine of Avinières (P1), Mange-Châtaigne (P2), Martinet (P3) and tailing ponds (P4)) and target site (centre-ville of Saint-Laurent-le-Minier (P5), Meuse (P6) and Hameau de la papeterie (P7)).

Transfert de nanoparticules dans les sols agricoles

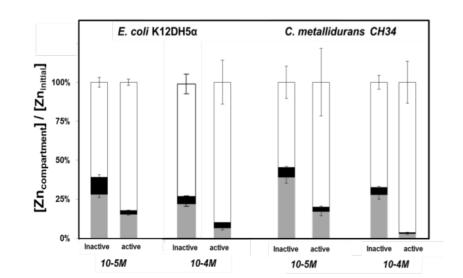

MICROWAVE Novawave – SCP Science

ICP-OES (VARIAN)

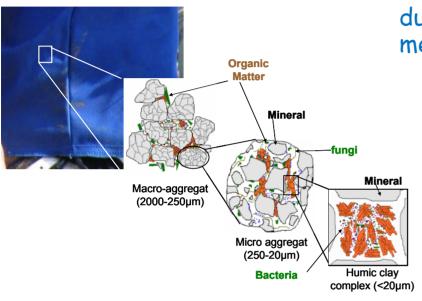

Elution de nanoparticules en colonnes de sol sableux



LTHE, Simonin, Richaume, Uzu, Martins


BIOSORPTION DE METAUX PAR LES BACTERIES

Analyse ICP-MS



→ Les métaux biosorbés par les cellules bactériennes (actives ou inactives) sont majoritairement internalisés dans le cytoplasme, en désaccord avec le concept de complexation de surface.

LTHE, Desaunay A. and J.M.F. Martins. J. Haz. Mat. 2014

APPORTS DU SÉQUENÇAGE HAUT-DÉBIT (NGS) DANS L'ÉTUDE DE L'IMPACT DES MÉTAUX LOURDS DANS LES SOLS À MICRO-ÉCHELLE

Sol structuré contaminé avec du Cu (240 ppm), du Cr (100 ppm) et du Cd (50 ppm) seuls ou en mélange ICP-OES (Varian)

Fractionnement granulométrique du sol

→ F1, F2, F3 et F4

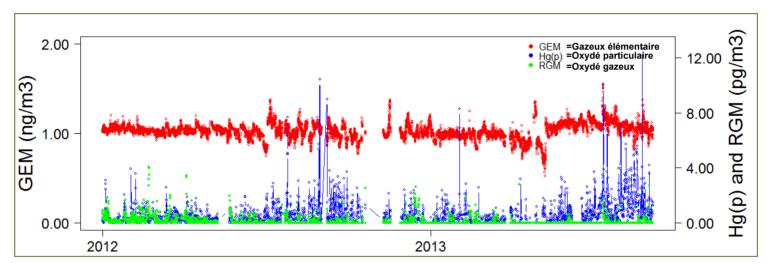
TENEURS TOTALES EN MÉTAUX DANS LE SOL ET SES FRACTIONS

H2O Oj H2O 3Oj Cd (50ppm) Cr (100ppm) Cu (240ppm) Mél. 3Oj
3Oj 3Oj 3Oj Cd (ppm)

Co (240ppm) Mél. 3Oj

Co (ppm)

Distribution variable des métaux au sein des fractions granulométrique


= impact spatialisé des métaux

Atmosphères polaires: mesures de Hg dans l'air ou la neige

Principes des instruments: amalgame/préconcentration sur or, détection par fluorescence atomique 253.7 nm sous flux d'Ar.

1 - Analyseur <u>du Hg total</u> en solution (Tekran 2600) : dédié aux matrices très peu concentrées (neige, eau, glace), DL<0.2 ng/L pour 30 mL d'échantillons. Passeur.

Exemple du suivi des espèces atmosphériques entrepris depuis 2 ans sur l'île Amsterdam dans le cadre du programme GMOS (Global Mercury Observation System)

LGGE - Dommergue, Magand